Continuous Dynamic First Principles Models

J. D. Hedengren
T. F. Edgar
The University of Texas at Austin
Introduction

• Objectives:
 – Test ISAT with a variety of nonlinear models.
 – Create a forum to share chemical and mechanical first principles models.

• Please contribute your well documented model by e-mailing: john@che.utexas.edu
Summary

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Type</th>
<th>Inputs: States</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CSTR with Jacket Dynamics (A->B)</td>
<td>ODE</td>
<td>1:2</td>
</tr>
<tr>
<td>3</td>
<td>CSTR with Jacket Dynamics (A->B->C)</td>
<td>ODE</td>
<td>1:3</td>
</tr>
<tr>
<td>4</td>
<td>2 CSTRs in Series (A->B)</td>
<td>ODE</td>
<td>2:6</td>
</tr>
<tr>
<td>5</td>
<td>2 CSTRs in Series with Jacket Dyn (A->B)</td>
<td>ODE</td>
<td>1:4</td>
</tr>
<tr>
<td>6</td>
<td>Inverted Pendulum</td>
<td>ODE</td>
<td>1:2</td>
</tr>
<tr>
<td>8</td>
<td>Distillation Column (Constant Relative Volatility)</td>
<td>ODE</td>
<td>1:32</td>
</tr>
<tr>
<td>11</td>
<td>Cruise Control</td>
<td>ODE</td>
<td>1:1</td>
</tr>
<tr>
<td>12</td>
<td>Cruise Control (with Disturbance)</td>
<td>ODE</td>
<td>1:1</td>
</tr>
<tr>
<td>13</td>
<td>Distillation Column with Wilson Eq and (P_{\text{sat}}/P) constant</td>
<td>ODE</td>
<td>1:32</td>
</tr>
<tr>
<td>14</td>
<td>Distillation Column with Wilson Equation</td>
<td>DAE</td>
<td>1:64</td>
</tr>
<tr>
<td>18</td>
<td>Distillation Column with Enthalpy Equation</td>
<td>DAE</td>
<td>2:125</td>
</tr>
</tbody>
</table>
Model 1: CSTR

Model 5: Dual CSTR

Model 11: Cruise Control

Source: http://www.engin.umich.edu/group/ctm/examples/cruise/cc.html
Date: July 2003
Model 12: Cruise Control

Created by: John D. Hedengren
Date: July 2003
Model 13: Binary Distillation

Created by: John D. Hedengren
Date: July 2003
Model 14: Binary Distillation

Created by: John D. Hedengren
Date: July 2003
Model 18: Binary Distillation
